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It is now believed that the scaling exponents of moments of velocity increments are
anomalous, or that departures from Kolmogorov’s (1941) self-similar scaling increase
nonlinearly with the increasing order of the moment. This appears to be true whether
one considers velocity increments themselves or their absolute values. However, moments
of order lower than 2 of the absolute values of velocity increments have not been in-
vestigated thoroughly for anomaly. Here, we discuss the importance of the scaling of
non-integer moments of order between +2 and -1, and obtain them from direct numeri-
cal simulations at moderate Reynolds numbers and experimental data at high Reynolds
numbers. The relative difference between the measured exponents and Kolmogorov’s pre-
diction increases as the moment order decreases towards −1, thus showing that anomaly,
which is manifest in high-order moments, is evidently present in low-order moments as
well. This result provides a motivation for seeking a theory of anomalous scaling as the
order of the moment vanishes. Such a theory does not have to consider rare events—
which may be affected by non-universal features such as shear—and so may be regarded
as advantageous to consider and develop.

1. Introduction

The moments of velocity differences over spatial scales of size r, the so-called struc-
ture functions, provide useful measures of the statistical description of fluid turbulence
(Kolmogorov (1941a), Kolmogorov (1941b)). In particular, the longitudinal structure
functions, defined as

Sn(r) =
〈

[(u(x+ r)− u(x)) · r̂]n
〉

, (1.1)

have been studied extensively. Here, u(x) is the velocity vector at position x, and r̂ is
the unit vector along the separation vector r. The special interest in structure functions
comes in part from an exact result, known as the 4/5-ths law,

S3(r) = −
4

5
εr, (1.2)
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valid in the inertial range of scales (η ¿ r ¿ L where η is the Kolmogorov scale char-
acterizing the dissipative scale of motion and L is a suitable large scale of turbulence).
In part, the interest is spurred by the operational ease with which longitudinal structure
functions can be obtained from experimental data if one makes the so-called Taylor’s hy-
pothesis (Taylor (1935)). The major impetus for measurements, however, is the scaling
result of Kolmogorov—K41 for brevity—that, for Reynolds numbers, the structure func-
tions follow the relation Sn(r) ∼ rζn where the scaling exponent ζn = n/3. As a result
of considerable work (see, for example, Anselmet et al. (1984), Maurer et al. (1994), Ar-
neodo et al. (1996), Sreenivasan & Antonia (1997), it now appears nearly certain that the
scaling exponents deviate from n/3 increasingly and nonlinearly as n increases. This is
the anomalous scaling. While some issues remain to be explained satisfactorily (see, for
example, Sreenivasan & Dhruva (1998)), it appears that anomalous scaling is a genuine
result worthy of a serious theoretical effort. Consequently, sizeable thrusts of research
have occurred in this direction (e.g., L’vov & Procaccia (1996)).

One obvious concern about high-order moments is that, since they sample the tails of
the probability distribution function (PDF) of velocity increments—and since some of
the associated rare events may be tied to well-defined flow structures in real space—it is
not clear that the results for high-order moments are unambiguously universal: this is so
because the mean shear and other non-universal features driving the flow could influence
flow structures that are rare. In contrast, low-order moments are less susceptible to such
non-universal properties, because they are determined nearly entirely by the core of the
PDF and hence sampled frequently. Thus, it is reasonable to regard anomalous scaling—
and its universality—as more conclusively established if low-order moments also display
anomaly. This is the main concern of this paper.

The lowest non-trivial moment that has been studied extensively is the second-order
structure function, whose scaling exponent has been shown to be ≈ 0.7. Though this is
different from the predicted value of 2/3, the difference is too small to be conclusive on
its own. It would thus be useful to examine scaling exponents for moments of still lower
orders. Since moments of order -1 and below do not exist for velocity increments (Castaing
et al. 1990), our range of interest is limited to −1 < n 6 2, where n is necessarily
fractional. With decreasing n in this range, if the deviation from n/3 decreases, we shall
at least know that K41 will be exact in the limit of low-order moments, and regard it
as a possible reference point for a theory. If, on the other hand, these deviations remain
to be non-trivial as n vanishes, it may well be that the understanding of the anomaly
can be sought more fruitfully in terms of low-order moments, for the simple reason that
such a theory can justifiably ignore structures in real space and other rare events. Some
preliminary measurements were published in Sreenivasan et al. (1996) and Cao et al.
(1996) but the present paper is a more complete examination of the data. Perhaps more
importantly, the preliminary numbers did not take account of the possible effects of
residual anisotropy in both experiments and simulations. We do so here using a recently
developed angle-averaging technique (Taylor et al. (2003)).

The rest of the paper is organized as follows. In section 2, we describe the experimental
and numerical data used for the present analysis. This is followed in section 3 by the
calculation of the fractional structure functions and their scaling exponents from the
datasets described in section 2. For the 10243 simulations, we eliminate possible effects
of residual anisotropy by angle-averaging. The exponents from the various sources of data
are in good agreement with each other and deviate measurably from the K41 prediction
even as n→ 0. Section 4 contains a brief discussion of the significance of the results.
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U u′ ε η λ Rλ

7.6 ms−1 1.36 ms−1 0.032 m2s−3 0.57 mm 11.4 mm 10,340

Table 1. Some relevant parameters for the atmospheric data. Here, U is the mean speed, u′ is the
root-mean-square velocity, ε is the mean rate of energy dissipation, η and λ are the Kolmogorov
and Taylor microscales, respectively, and Rλ ≡ u′λ/ν, ν being the kinematic viscosity of air at
the temperature of the measurement.

2. Experimental and numerical data

2.1. High-Reynolds number atmospheric boundary layer measurements

Hotwire measurements were made in the atmospheric surface layer at a height of 35 m
above the ground using the meteorological tower at Brookhaven National Laboratory.
The tower itself presented very little obstacle to the wind because of its low solidity.
The dataset analyzed here is part of a more comprehensive batch of data obtained at the
tower. The hotwire, 0.7 mm in length and 0.5 µm in diameter, was placed facing the wind,
about two meters away from the tower. (For monitoring the wind direction, the tower
was equipped with a vane anemometer placed two meters away from the measurement
station.) The calibration was performed in situ using a TSI calibrator and checked later
in a windtunnel. The signals were low-pass filtered at 5 kHz and sampled at 10 kHz. The
anemometer and signal conditioners were placed nearby at the height of measurement,
and the conditioned signal was transmitted to the ground and digitized using a 12-bit
A/D converter. Typical data records contained between 10 and 40 million samples, during
which time the wind direction and its mean speed were deemed acceptably constant. More
details are given in Dhruva (2000), but the essential features for this particular set of
data are listed in table 1. The wind conditions were somewhat unstable.

2.2. Two direct numerical simulations of Navier-Stokes equations with forcing

The Navier-Stokes equations were solved numerically for periodic boundary conditions.
A pseudospectral code was used using a second-order time-integration scheme Cao et
al. (1996). Simulations were carried out with a resolution of 5123 grid points on the
CM-5 at Los Alamos national Laboratory and SP machines at IBM Watson Research
Center. To obtain a statistically steady state, a forcing is applied to the first wave-number
shells 0.5 < k < 1.5 so that at each time step the total energy of that shell is constant.
Time integration up to 60 large-eddy turn-over times was performed to collect data for
statistical analysis.
Even though the numerical data show well-developed scaling range in an ESS plot, the

Reynolds number is not large enough to produce unambiguous scaling in direct log-log
plots of moments versus the scale r. The computational grid was 5123 in size and, as
already remarked, the maximum microscale Reynolds number was about 250. It was also
found that, even though the turbulence is nominally isotropic, there are some measurable
(though small) differences between the scaling of longitudinal and transverse structure
functions, suggesting a possible presence of residual anisotropy in the inertial range,
arising from forcing anisotropy. For these two reasons, it seemed worthwhile to consider
data from a higher Reynolds number simulations and ensure that anisotropy effects, if
they are present at all, could be accounted for in a rational manner. We therefore used
the velocity data from a simulation of the Navier-Stokes equation in a periodic domain of
size 10243. The forcing scheme is similar to that described above for the 5123 simulation
and is explained in detail in Taylor et al. (2003). In this case the steady state was achieved
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N ν ε δx
η

Rλ

1024 3.5× 10−5 1.75 0.75 450

Table 2. Some relevant parameters for the 10243 DNS.
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Figure 1. ESS calculation of scaling exponent of order 0.5 from experimental data.

in about 1.5 large-eddy turnover times and the simulation ran for a total of 2.5 large-
eddy turnover times. The statistical analysis was performed over 10 frames in the final
eddy turnover time. The steady state Taylor-microscale Reynolds number was Rλ ∼ 450.
Other parameters of this simulation are given in Table 2.

3. Results

Since we are interested in real-valued structure functions, we can consider, when the
moment order is either fractional or negative, only the moments of absolute values of
velocity differences defined as

S|n|(r) =
〈∣

∣

∣
(u(x+ r)− u(x)) · r̂

∣

∣

∣

n〉

. (3.1)

where n may be a fraction or a negative integer. In experimental measurements, because
the Reynolds number is quite high (see table 1), and hence the scaling ranges reasonably
clear, we have the luxury of estimating the scaling exponent directly from log-log plots
of S|n|(r) versus r (see Dhruva (2000)).
We also performed the calculation using extended self-similarity or ESS (Benzi et al.

(1993)). In ESS, the structure function Sn(r) of interest is plotted against another struc-
ture function Sm(r) and the relative scaling exponent ζn/ζm is obtained. In particular,
if the exponent of Sm(r) is known a priori, as from the theoretical estimate for the
third-order structure function (Eq. 1.2), then the exponent of Sn(r) may be inferred. It
is known that ESS improves the scaling range significantly. In the present case we use
Sm(r) = Sf3(r), the absolute third-order structure function and assume its scaling expo-
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order measured relative DNS exponents relative DNS exponents relative
of moments exponents difference (5123) difference (10243) difference

-0.80 -0.317 0.189 -0.313 0.174 - -
-0.60 - - - - -0.238±0.002 0.188
-0.40 - - - - -0.158±0.001 0.181
-0.20 -0.078 0.170 -0.077 0.155 -0.078±0.001 0.171
0.10 0.039 0.170 0.036 0.080 0.039±0.001 0.155
0.20 0.076 0.140 0.073 0.095 0.077±0.001 0.152
0.30 0.113 0.130 0.112 0.120 0.115±0.001 0.147
0.40 0.150 0.125 0.150 0.125 0.152±0.001 0.143
0.50 0.187±0.003 0.140 0.187 0.122 0.190±0.001 0.138
0.60 0.221 0.105 0.223 0.115 0.226±0.001 0.133
0.70 0.265 0.136 0.260 0.114 0.263±0.001 0.128
0.80 0.292 0.095 0.296 0.110 0.300±0.001 0.123
0.90 0.333 0.110 0.332 0.107 0.340±0.001 0.119
1 0.372 0.116 0.366 0.098 0.370±0.006 0.111

1.25 0.458 0.099 0.452 0.085 0.459±0.006 0.101
1.50 0.542 0.084 0.536 0.072 0.545±0.006 0.091
1.75 0.628 0.077 0.619 0.061 0.630±0.006 0.079
2.00 0.704±0.003 0.061 0.699 0.049 0.712±0.006 0.064

Table 3. Scaling exponents from ESS compared with those from for isotropic turbulence from
two sets DNS data. Error bars are given for the experimental data for two exponents. Those for
the 5123 data are given in Cao et al. (1996).

nent is 1. There is some current discussion as to whether this assumption is valid since
the K41 theory does not make any mention of the moments of absolute differences, and
indeed it appears that the scaling exponents of S3 and S|n| are in fact slightly different
(Sreenivasan et al. (1996)). However, we found that the exponents obtained from ESS
were within uncertainty of those obtained directly by Dhruva (2000). An example of ESS
plot for moment-order of 0.5 is shown in figure 1, along with the local slope (see inset).
For the numerical simulation data with resolution of 5123, the exponents were obtained

by ESS because the scaling region was small in direct log-log plots against the scale r.
Both sets of exponents are listed in table 3.

3.1. Effects of finite Reynolds number and anisotropy

The finite Reynolds number of turbulence in numerical work shortens the inertial range
over which clear scaling exponents may be observed. This remains a constraint because
the applicable theory concerns the limit of Re → ∞. A constraint in experimental data
is that some large-scale anisotropy might be present in the range that appears to be
scaling. This effect could be present even in high-Reynolds-number flows because the
effects of anisotropic forcing penetrate the scaling range in a subtle but systematic way
Arad, L’vov & Procaccia (1999), Kurien & Sreenivasan (2001). In numerical simulations,
the statistics are usually calculated in the coordinate directions of the flow (that is, for
r̂ oriented parallel to a box-side). If there is persistent anisotropy (angular-dependence)
of the statistics in the small-scales, then looking in only a few directions might bias the
results. Since we are concerned here with delicate results, this source of uncertainty due
to anisotropy has to be addressed satisfactorily.

3.1.1. Recovering isotropic statistics by angle-averaging

We make use of two recent developments to properly eliminate the effect of anisotropy
in the inertial range in our final data set, the 10243 numerical simulation. First, we
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now know that isotropic and anisotropic contributions can be isolated systematically by
projecting structure function of a given order over a particular basis function in its SO(3)
group decomposition (Arad et al. (1998), Kurien et al. (2000), Kurien & Sreenivasan
(2000), Arad et al. (1999), Warhaft & Chen (2001)). This is a useful step to perform
even in nominally isotropic turbulence because the effect of forcing might persist in
the nominal scaling range. Second, the recent work by Taylor et al. (2003) developed a
method by which the third-order longitudinal structure function was computed in many
directions of the flow; the results were then averaged over all angles for a given r. The
angle-averaged value of the structure function achieved the Kolmogorov 4/5 prediction
to a remarkable degree, thus providing a convincing method for extracting the isotropic
component of an arbitrary anisotropic flow. This angle-averaging procedure is in effect a
projection onto the isotropic component of the SO(3) rotation group decomposition. The
method is independent of the order of the structure function and we use it as described
below for the fractional statistics.
The angle-averaged isotropic structure function in the flow domain D is given by

S|n|(r) =
1

∆t

∫ t0+∆t

t0

dt

∫

dΩr
4π

∫

D

dx

L3

∣

∣

∣
(u(x+ r)− u(x)) · r̂

∣

∣

∣

n

, (3.2)

where the usual average over the domain for a particular direction of the unit separation
vector r̂ is followed by a spherical average of all possible orientations of r̂ over the solid
angle Ωr. The long-time average is over times where the flow has reached steady state.
In our case t0 is 1.5 large-eddy turnover times into the simulation, and ∆t is 1 large-eddy
turnover time.
In numerical simulations, since we have the full three-dimensional velocity field, we can

in principle perform the integration over the sphere and so project out the isotropic part
of the function. The work of Taylor et al. (2003) showed that the full spherical average
may be approximated to arbitrary precision by first computing the structure function
over sufficiently many different directions in the flow, interpolating each of these functions
by a simple single-variable cubic spline, and then averaging the interpolated values over
the all the directions. This angle-averaging of the structure functions is much cheaper to
implement than, say, first interpolating the three-dimensional, three-component velocity
data over spherical shells in order to perform the integration. It is also more accurate in
the small scales than other spherical averaging schemes.
At the very low-order moments |n| < 1 we observed that the anisotropy in the inertial

range was marginal in the sense that the statistics computed in the different directions
nearly coincided with each other with differences observed only at large scales r/η > 300.
Nevertheless, the angle-averaging procedure was performed for all orders and the angle-
averaged functions were used to deduce the scaling exponents. In figure 2 we show the
logarithmic derivative (the local slope) of the structure functions for various fractional
orders, This is just the local scaling exponent ζ|n| as a function of r. The inertial range
scaling is the (mean) value of the local slope function over the range in which it is nearly
horizontal. A rough estimate of the inertial range from figure 2 is 50 < r/η < 140 and the
error estimate on the value scaling exponent is calculated as the variance over this range.
As expected, the smaller the absolute order |n|, the flatter is the local-slope function over
this range indicating the that our confidence level improves as the order decreases. The
scaling exponents and their uncertainty over the inertial range are given for a range of
fractional orders in table 3, column 6. The exponents calculated in the three different
ways from the three different datasets available display a good degree of agreement.
The scaling exponents computed in this way from the 10243 simulation are plotted

as a function of order n in figure 3. For comparison, the K41 exponents are also shown.
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Figure 2. The scaling exponents equal to the local slopes ζ|n| = d log(S|n|(r))/d log(r) as a

function of r, for various values of −1 < n < 2 computed from the 10243 DNS. Each curve is
labeled on the left by the order of the structure function. The values of the scaling exponents
which can be deduced in this way are given on the right for two representative orders, n = 1.25
and n = −0.6.
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Figure 3. The value of scaling exponents calculated from the 10243 DNS (◦); standard devia-
tions (≈ ±0.001) are smaller than the size of the circles. Full line: K41 exponents, extrapolated
via self-similarity arguments to the low-order statistics. Anomalous scaling is evident.

The measured exponents deviate from the corresponding K41 exponents at each order.
This shows that the intermittency, until now thought to be characteristic of only the
high-order moments which sample the ’fat’ tails of the PDF of velocity increments, in
fact measurably persists into the low-order moments, which sample the core of the PDF.
Figure 4 shows the relative departure of the measured scaling exponents from the self-
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Figure 4. The relative difference (ζ|n| − n/3)/(n/3) for the various −1 < n 6 10 as calculated

from the experiments (◦), DNS (5123) (×) and DNS (10243) (?). This difference smoothly goes
through n = 0 without any special feature, suggesting that anomaly is present even in the
limit of the zero-th order moment. There is also no special behavior as n→ −1 at which point
the mathematically defined scaling exponent and hence the relative difference, diverges. The
exponents for n > 3 for the experiments and the 5123 simulation are taken from the values
tabulated in Dhruva (2000).

similarity prediction of K41, (ζ|n| − n/3)/(n/3), is a smooth function of n in the range
−1 < n 6 10 (figure. 4). We have also presented the anomalous exponents calculated from
the multifractal p-model for comparison. More here on the p-model. The dependence on
n in the range −1 < n 6 3 is more or less linear and becomes weakly quadratic for n > 3.
The exact 4/5−law result of K41 with scaling exponent 1, takes the relative difference
to zero at n = 3. A noteworthy point in this curve is at n = 0. The relative difference
from K41 is not defined for n = 0, nevertheless, the experimental and model values
go smoothly through zero. We interpret this to mean that anomalous scaling exists in
the limit n → 0 with relative departure from K41 of about 16% (see the y-intercept at
n = 0 in figure 4). As the negative powers are approached the relative anomaly increases
smoothly as n → −1. The negative order moments have negative scaling exponents
and hence greater contribution from the small scales than from the large scales when
compared to the positive order statistics. Does that and the following sentence make

sense? This suggests that they are sampling the extremely non-gaussian PDFs of the
velocity difference across the very small scales; as one gets closer to n = −1 the moments
remain formally well-defined, but the finite resolution makes measured moments of order
n < −0.8 or so increasingly noisy in the small scales.

4. Discussion and conclusions

The principal result of this work is that fractional low-order moments have scaling
exponents that are different from n/3. In this sense, it is reasonable to consider that
anomaly exists in both negative and very low-order moments. Thus, instead of focusing
entirely on high-order moments in search of an explanation for intermittency, it may also
be reasonable to attempt to understand this feature for low-order moments. This has
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the advantage that one is focusing not on rare events whose universality may be in some
question, unless some additional care is taken.
We should remark on a lingering uncertainty. To keep structure functions real-valued,

we can only consider, in the range −1 < n 6 2, fractional moments of absolute valued
velocity increments defined through (3.1). The difference between the structure functions
defined in 1.1 and the corresponding ones defined for absolute-valued velocity increments
is by no means clear for large n. An ongoing investigation () appears to indicate that
the absolute-valued structure functions have a larger scaling exponent than the classical
ones when n is large and odd. It cannot therefore be dismissed entirely that the depar-
tures from n/3 that one may observe for small and fractional n may merely suggest the
possibility that K41 does not somehow apply to absolute moments. Even if this is our
only conclusion, it is still new and thus of some interest.
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